Rosauer, T., Cao, H. T., Bhattacharya, M., Carney, P., Johnson, L., Levin, S., Liang, C., Ma, X., Martin Gutierrez, L., Padilla, M., Tao, L., Wilkin, A., Brooks, A., & Richardson, J. W. (2025). Demonstration of a next-generation wavefront actuator for gravitational-wave detection. Optica, 12(10), 1569
Tao, L., Bhattacharya, M., Carney, P., Gutierrez, L. M., Johnson, L., Levin, S., Liang, C., Ma, X., Padilla, M., Rosauer, T., Wilkin, A., & Richardson, J. W. (2025). Expanding the Quantum-Limited Gravitational-Wave Detection Horizon. Physical Review Letters, 134(5), 1401
Gurav, R., Kelly, I., Goodarzi, P., Effler, A., Barish, B., Papalexakis, E. E., & Richardson, J. W. (2024). Multivariate Time Series Clustering for Environmental State Characterization of Ground-Based Gravitational-Wave Detectors. 2024 IEEE International Conference on Big Data (BigData), 4145–4152
Fulda, P., Ballmer, S., & Richardson, J. W. (2024). Achieving a cosmological reach: from Advanced LIGO to the next generation of terrestrial gravitational wave detectors. SPIE Proceedings Volume 12997, Optics and Photonics for Advanced Dimensional Metrology III; 129970T
Barish, B. C., Richardson, J. W., Papalexakis, E. E., & Gurav, R. (2023). Machine Learning for Complex Instrument Design and Optimization. Artificial Intelligence for Science, 95–116
Richardson, J. W., Pandey, S., Bytyqi, E., Edo, T., & Adhikari, R. X. (2022). Optimizing gravitational-wave detector design for squeezed light. Physical Review D, 105(10), 2002
Aiello, L., Richardson, J. W., Vermeulen, S. M., Grote, H., Hogan, C., Kwon, O., & Stoughton, C. (2022). Constraints on Scalar Field Dark Matter from Colocated Michelson Interferometers. Physical Review Letters, 128(12), 1101
Gurav, R., Papalexakis, E. E., Vajente G., Richardson, J. W., & Barish, B (2022). Identifying Witnesses to Noise Transients in Ground-based Gravitational-wave Observations using Auxiliary Channels with Matrix and Tensor Factorization Techniques. The Thirty-Sixth Annual Conference on Neural Information Processing Systems (NeurIPS 2022) AI for Science Workshop